КВАНТОВЫЙ МАГНИТОМЕТР

Квантовый магнитометр — прибор, предназначенный для измерения напряженности магнитных полей, базирующийся на квантовых явлениях. Подобные явления — квантовые изменения магнитного потока в сверхпроводящем контуре, квантовые переходы между магнитными подуровнями атомов, а также упорядоченная свободная прецессия электронных или ядерных магнитных моментов.

Квантовые магнитометры используются в основном для измерения напряженности слабых магнитных полей и, например, магнитного поля Земли и его аномалий на ее поверхности и на высотах, которые соответствуют орбитам искусственных спутников Земли и баллистических ракет, для измерения в космическом пространстве магнитных полей планет Солнечной системы. Квантовые магнитометры используются также для обнаружения полезных ископаемых, поиска затонувших судов, для магнитного каротажа и т. п.

Уровни энергии молекул, атомных ядер или электронов атомов, которые обладают магнитными моментами, в магнитном поле разделяются на несколько подуровней, разность энергий между которыми напрямую зависит от величины магнитного поля и во многих случаях пропорциональна его напряженности. Частицы могут перемещаться с одного магнитного подуровня на другой, излучая или поглощая порцию электромагнитной энергии. Частота электромагнитного поля равна частоте прецессии магнитного момента, расположенного вокруг направления магнитного поля. Частота 0,1 лежит в радиодиапазоне. Измеряя ее по резонансному поглощению веществом радиоволн, можно узнать напряженность магнитного поля. Исходя из того, что коэффициент пропорциональности между частотой и полем выражается с помощью атомных констант, характеризующихся весьма высокой воспроизводимостью и стабильностью, чувствительность таких квантовых магнитометров высока. Наиболее совершенные квантовые магнитометры данного типа обладают чувствительностью до 10"8 э или 10~3 гамм.
В электронном квантовом магнитометре используется прецессия в магнитном поле магнитных моментов неспаренных электронов парамагнитных атомов.

Частота прецессии для электронов в поле напряженностью 1 э равна 2,8 МГц. Изменение поля на 1 гамму приводит к смене частоты прецессии на 28 Гц, что в 660 раз больше, нежели для протонных магнитометров.

Для получения достаточно больших ЭДС используют методы динамической поляризации ядер. При этом ориентация магнитных моментов протонов производится с помощью их взаимодействия с электронными моментами парамагнитных ионов. Данным способом ядер-ную намагниченность можно увеличить в несколько сот раз. Использование вещества, которое содержит радикалы нитрозодисульфоната калия, дает возможность увеличить намагниченность еще приблизительно в 40 раз.

У оптического магнитометра датчиком прибора служит стеклянная колба, наполненная парами щелочного металла, атомы которого являются парамагнитными, так как содержат один неспаренный электрон. При пропускании через колбу, которая помещена в измеряемое магнитное поле, циркулярно поляризованного света, частота которого соответствует частоте оптического квантового перехода между обычным состоянием атома и его возбужденным состоянием, осуществляется резонансное рассеяние света. При этом момент количества движения квантов рассеиваемого света посылается атомам, которые подобным образом «оптически ориентируются», центрируясь на одном из магнитных подуровней обычного состояния. Если в объеме колбы датчика возбудить переменное магнитное поле, частота которого соответствует частоте квантового перехода между магнитными подуровнями обычного состояния, то на магнитных подуровнях населенность атомов выравнивается, атомы теряют накопленную преимущественную ориентацию магнитных моментов и возвращаются в начальное состояние. При этом пары металла, которые наполняют колбу, опять начинают сильно рассеивать и поглощать свет. Измеряя частоту переменного поля, можно найти напряженность магнитного поля, в котором расположена колба датчика.

Оптические квантовые магнитометры очень удобны для измерения слабых полей. Чувствительность, которую можно достигнуть с помощью таких приборов, позволяет мерить очень слабые поля, например в космическом пространстве.

Сверхпроводящий магнитометр базируется на делении магнитного потока, который захвачен сверхпроводящим кольцом. Значение захваченного потока кратно кванту магнитного потока. Полный ток, который протекает через параллельные соединения двух переходов Джозефсона, в результате сложения токов, протекающих по каждой из ветвей, меняется пропорционально косинусу заряда электрона, деленного на постоянную Планка, умноженную на магнитный поток. Наблюдая за переменами тока, протекающего через двойной переход Джозефсона, возможно измерять магнитный поток и, имея площадь сечения перехода, найти напряженность измеряемого магнитного поля. В том случае, если площадь, которая охвачена двумя переходами, равна 1 мм2, максимумы тока поделены расстоянием, равным удвоенному ускорению свободного падения. Таким способом можно регистрировать десятую часть данного интервала. Чувствительность способа составляет в подобном случае 0,2 гаммы.

Все квантовые магнитометры не реагируют на вибрации; их показания не зависят от расположения прибора относительно измеряемого поля и незначительно зависят от смены влажности, давления, температуры и т. п.


ПОДЕЛИСЬ!