Вакуумный насос — разновидность насосов, которая применяется с целью удаления (т. е. откачивания) газа или пара из какого-то замкнутого объема или замкнутой системы — для создания в ней безвоздушного пространства, т. е. вакуума. Существует несколько типов вакуумных насосов, основными из которых являются механический, струйный, сорбционный и криогенный вакуумный насос. Рассмотрим более подробно виды вакуумных насосов.

1. Водокольцевые насосы — относятся к насосам объемного действия. При быстром вращении ротора, имеющего радиальные лопатки, вода отбрасывается к периферии корпуса и создает водяное кольцо приблизительно постоянной толщины, благодаря которому полости, образуемые лопатками ротора, герметично отделяются друг от друга. Так как ось вращения ротора смещена относительно оси цилиндрической расточки корпуса, то при вращении ротора объемы, отсекаемые лопатками, меняются, и, таким образом, создается разреженное пространство, обеспечивающее всасывание откачиваемого газа через впускное отверстие и сжатие газа перед выбросом его в атмосферу через выпускное отверстие.
Через выпускное отверстие удаляется также излишек воды, благодаря чему толщина водяного кольца остается постоянной во время работы насоса, несмотря на подвод холодной воды из сети, что необходимо для отвода тепла и для компенсации потерь воды в виде паров и брызг, выбрасываемых с откачиваемым газом. Предельное остаточное давление насоса определяется давлением паров воды и составляет примерно 2 х х 103 Па при 293 К. Водокольцевые насосы применяют для откачки черновых трубопроводов централизованных форвакуумных систем, в сушильных установках, а также в качестве безмас-ляных насосов для форвакуумной откачки.

2.    Механические вакуумные насосы с масляным уплотнением. Механические вакуумные насосы с масляным уплотнением относятся к насосам объемного действия и работают за счет периодического изменения объема рабочей камеры.

Механические насосы могут быть пластинчатороторными, пластинчатостаторными и плунжерными (или золотниковыми). В цилиндрической расточке камеры насоса вращается эксцентрично расположенный ротор, в прорези которого свободно вставлены пластины с пружиной. При вращении ротора пластины скользят по внутренней поверхности цилиндра, и в камере насоса образуются две полости переменного объема, одна из которых — полость всасывания, другая — полость сжатия. Полость всасывания при вращении ротора увеличивает свой объем, и в нее поступает газ из впускного патрубка, связанного с откачиваемым сосудом. Объем полости сжатия, расположенный на выпускной стороне, уменьшается при вращении ротора, и в ней происходит сжатие газа. Эта полость соединена с клапаном. Когда давление газа в полости станет достаточным для открытия клапана, произойдет выхлоп. В процессе работы зазоры в роторном механизме уплотняются рабочей жидкостью насоса — маслом, благодаря чему обратное перетекание газа с выхода на вход становится достаточно малым. Масло заполняет и так называемые вредные пространства, из которых газ вытесняется при работе роторного механизма (например, объем под клапаном) и исключает их влияние, ведущее к повышению предельного остаточного давления.

Одновременно масло обеспечивает смазку и частичное охлаждение механизма насоса. Масло поступает в камеру насоса через зазоры и сверления в корпусе из маслорезервуара, где оно находится под атмосферным давлением, а через выхлопной клапан вновь возвращается в маслорезервуар. Такую же роль масло выполняет и в других типах насосов с масляным уплотнением, принципы работы которых рассмотрены ниже. В пластинчатостаторном насосе пластина, разделяющая полости всасывания и сжатия, свободно скользит в прорези статора, прижимаясь к ротору под действием пружины (через рычаг). В плунжерном (золотниковом) насосе в цилиндрической камере корпуса насоса вращается эксцентрик с надетым на него плунжером. Газ из откачиваемого сосуда поступает в полость всасывания через окно в прямоугольной части плунжера, который скользит в направляющей, свободно поворачивающейся в гнезде корпуса. При повороте эксцентрика на некоторый угол от верхнего положения окно в прямоугольной части плунжера выходит из направляющей вниз, полость всасывания соединяется с впускным патрубком насоса и газ поступает в полость всасывания, непрерывно увеличивающую свой объем, пока окно не будет снова перекрыто. Одновременно в полости сжатия происходят сжатие и выталкивание газа через выхлопной клапан. Процесс напуска газа через окно напоминает работу золотникового распределительного устройства, поэтому насосы такого типа получили название золотниковые.

Параметры и характеристики: предельное остаточное давление и некоторые другие параметры механических насосов с масляным уплотнением в значительной степени зависят от свойств рабочей жидкости (масла), залитой в насос. Как газы, так и конденсирующиеся пары, создающие обратный поток, попадают на вход насоса из циркулирующего в нем масла. Перед поступлением в камеру насоса масло некоторое время находится в маслорезервуаре, где подвергается воздействию атмосферного воздуха и поглощает газы. При поступлении масла в рабочую камеру поглощенные ранее газы выделяются из пленки масла и поступают на вход насоса.

У одноступенчатых насосов с масляным уплотнением давление остаточных газов составляет обычно 2,7—6,6 Па, а полное остаточное давление 2—6,6 Па. Пары на входе насоса являются не парами масла, а в основном продуктами его разложения (крекинга). В то время как давление насыщенных паров при комнатной температуре для масел, используемых в насосах с масляным уплотнением, меньше 102—-103 Па, легколетучие продукты крекинга масла имеют гораздо более высокие давления насыщения, что и определяет показание манометрического преобразователя. Крекинг масла в насосах происходит из-за возникновения высоких местных температур в области контактов трущихся поверхностей, которые не полностью разделены слоем масла. Обратный поток продуктов крекинга масла и других углеводородов составляет (на единицу площади сечения впускного патрубка) 0,1—0,3 мг/ч X см2. Наличие обратного потока продуктов крекинга масла приводит к загрязнению откачиваемых сосудов.

Для уменьшения обратного потока, поступающего из насоса в откачиваемый сосуд, во впускном патрубке насоса устанавливают ловушки. Кроме продуктов крекинга, на входе насоса обычно имеются пары загрязняющих масло легколетучих веществ (воды, растворителей). Для получения давлений остаточных газов ниже 10'1 Па используют двухступенчатые насосы с масляным уплотнением. Ближайшая к откачиваемому сосуду высоковакуумная ступень должна создавать небольшой перепад давлений (не более 0,1 Па) и поэтому не нуждается в масляном уплотнении, так как при низком давлении узкие зазоры обладают большим сопротивлением потоку газа.

Ступень 1 в процессе работы обычно не сообщается с масляным резервуаром ступени 2, и в нее не заносится воздух, растворенный в масле, благодаря чему и возможно достижение низких давлений. Небольшое количество масла, имеющееся в некоторых конструкциях насосов в отдельном маслорезервуаре ступени 1 для смазки механизма, находится под непрерывной откачкой ступенью 2, так что легкие фракции масла, имеющиеся в ступени 1, непрерывно откачиваются. Поэтому на входе двухступенчатого насоса количество паров легких фракций масла, определяющих полное остаточное давление, значительно меньше, чем у одноступенчатого. Давление остаточных газов у лучших образцов двухступенчатых насосов составляет 10_3 Па, полное остаточное давление 6,5—10“' Па.
У насосов с масляным уплотнением давление остаточных газов в основном определяется качеством изготовления. Как уже отмечалось, полное остаточное давление насоса зависит от состава (наличия летучих фракций) и состояния (в первую очередь — от температуры) рабочей жидкости. При повышении температуры масла наблюдается повышение как полного остаточного давления насоса, так и давления остаточных газов. После запуска холодного насоса установившаяся температура масла (50—70 °С) достигается через 2—3 ч в зависимости от размеров насоса. Быстрота действия ASH-иасосов с масляным уплотнением определяется их конструкцией. Быстрота действия насосов объемного действия практически не зависит от рода откачиваемого газа, так как разница в проводимости входных коммуникаций по разным газам очень мало сказывается на быстроте действия насоса. Быстрота действия одно- и двухступенчатых насосов зависит от впускного давления. Мощность, потребляемая насосами с масляным уплотнением, затрачивается на преодоление трения в механизме насоса (мощность трения или мощность потерь) и на процесс перемещения и сжатия газа (индикаторная мощность). В области низких давлений (ниже 103 Па) потребляемая насосом мощность практически остается постоянной и не зависит от давления на впуске. Эта постоянная мощность в области низких давлений и является мощностью потерь. Наибольшее давление запуска и наибольшее выпускное давление у механических насосов с масляным уплотнением равно атмосферному. Однако заводы-изготовители не рекомендуют длительную работу при давлении выше 2—4 Па, что связано с нежелательным уменьшением количества масла, поступающего в единицу времени в рабочую камеру насоса при повышенных давлениях, а также с выбросами и уносом масла в виде брызг и масляного тумана вместе с потоком откачиваемого газа. В качестве рабочей жидкости насосов с масляным уплотнением, как правило, используются продукты, получаемые из промышленных минеральных масел. Кроме обычных требований (низкая кислотность, необходимая вязкость, хорошие смазывающие свойства и т. п.), к маслам для вакуумных насосов предъявляются дополнительные: высокая термическая стойкость и низкое давление паров в интервале рабочих температур насоса, так как в противном случае невозможно получение низких предельных остаточных давлений.

Конструкции насосов. Пластинчатороторные насосы выполняются обычно с быстротой действия до 6 л/с. Это объясняется тем, что в местах контакта пластин с камерой насоса достигаются достаточно высокие относительные скорости, что и ограничивает, главным образом, создание крупных пластинчатороторных насосов. В плунжерных (золотниковых) насосах трение происходит лишь в направляющей, где относительная скорость сравнительно невелика. Поэтому средние (от 6 до 100 л/с) и крупные (свыше 100 л/с) насосы выполняются плунжерными (золотниковыми).

Недостатком плунжерных (золотниковых) насосов является неуравновешенность движущихся масс. Пластинчато-статорные насосы просты по конструкции, так как имеют минимальное количество трущихся пар, но из-за больших относительных скоростей пластины и ротора и значительной неуравновешенной массы эксцентричного ротора в настоящее время практически не изготавливаются. В малых насосах рабочие камеры герметизированы от попадания атмосферного воздуха путем погружения их в коробку с маслом, при этом обычно не требуется дополнительных уплотнений между цилиндрами и торцами рабочих камер. Вал насоса выводится из масляной ванны через самоподтягивающуюся резиновую манжету, предотвращающую течь масла. Камеры средних и крупных насосов выполняются из вакуум-плотных отливок и не требуют погружения в масляную ванну.

Места соединения торцевых крышек с цилиндрами герметизируются в этом случае шеллаком или глифталевым лаком или же резиновыми прокладками. Вал выводится в атмосферу через заполненный маслом сальник с самоподтягивающейся резиновой манжетой. Входные патрубки малых насосов часто выполняются в виде штуцеров под резиновый шланг, однако длинные участки резиновых шлангов во входных коммуникациях насосов делают невозможным получение низких предельных остаточных давлений из-за большого газовыделения резины, поэтому в последних моделях малых насосов входные патрубки делаются, как и у крупных, фланцевыми. Во входных патрубках насосов иногда устанавливают металлические сетки, защищающие механизм насоса от попадания мелких твердых предметов, выводящих насос из строя.

В средних и крупных насосах масляный резервуар выполняется либо заодно с корпусом насоса, либо в виде отдельного бака, соединенного трубками для подачи масла к соответствующим местам насоса. Приемное отверстие трубки или канала для подачи масла в рабочую камеру насоса всегда располагается выше дна масляного резервуара, что предотвращает попадание грязи и воды в насос. Если на вход остановленного насоса не напустить атмосферный воздух, то масло в резервуаре, находящееся под атмосферным давлением, заполнит камеру насоса, в которой сохраняется разрежение, и поднимется во впускной патрубок и даже в откачиваемый сосуд (если во впускной коммуникации не установлен клапан).
Последующий запуск насоса сильно затрудняется необходимостью вытеснить из камеры вязкое масло через выхлопной клапан и вызывает большие нагрузки на механизм насоса при резком пуске двигателя. Для предотвращения всасывания масла в маслопроводе некоторых средних и крупных насосов устанавливают клапан, который надо открывать непосредственно после запуска и закрывать перед выключением насоса.

У дистанционно управляемых насосов в маслопроводах устанавливают электромагнитный клапан, срабатывающий при включении и выключении электродвигателя или приводящийся в действие от центробежного механизма, связанного со шкивом насоса. Малые насосы, как правило, не имеют запирающих устройств в маслопроводе, поэтому для предотвращения всасывания масла во впускную коммуникацию необходимо напустить воздух на вход остановленного насоса. Масло может проникать в остановленный насос и через выхлопной клапан; чтобы этого не происходило, объем масла, находящийся над выхлопным клапаном, ограничивают, окружая клапаны щитками или кожухами. Работа насоса при высоких впускных давлениях 104 Па сопровождается выбросами брызг и капель масла в выхлопной патрубок вместе с потоком откачиваемого газа. Для устранения этого явления у выхлопного отверстия насоса устанавливают маслоотделители (маслоотбойники), например, в виде щитков.

В насосах средних размеров иногда используют отдельные маслоотбойники, прикрепленные к выхлопному отверстию в корпусе насоса. При впускных давлениях 104—102 Па работа насосов сопровождается образованием заметных количеств так называемого масляного тумана, который выходит из насоса в виде сизо-белого дыма.

В насосах с быстротой действия до 5 л/с для задержания масляного тумана могут быть использованы простые фильтры, например бумажные, из стекловаты или керамические. Однако эти фильтры нуждаются в периодической замене (бумажные) или промывке (керамические), а также затрудняют эксплуатацию насосов, откачивающих пары воды. Поэтому лучшим способом защитить производственное помещение от поступления масляного тумана является подключение выхлопа насоса к выхлопной коммуникации с помощью дюритового шланга или металлической трубы.

Газобалластное устройство и откачка конденсирующихся паров. Проведение многих вакуумных технологических процессов (сушка, пропитка, дистилляция) сопровождается выделением значительных количеств конденсирующихся паров, откачка которых обычным насосом с масляным уплотнением еще 40—50 лет тому назад была очень трудной задачей. Если в логарифмическом масштабе показать изменение давления газа и паров в камере насоса по мере увеличения степени сжатия, то получится следующее: е = / V , где F с — объем рабочей камеры насоса в момент на конец всасывания, а объем рабочей камеры в момент сжатия при давлении р = 1,2 х 105 Па, когда открывается выхлопной клапан. Пусть давление во впускном сечении насоса составляет 1,33 х 102 Па. При сжатии газа давление возрастает до р, клапан открывается и газ выталкивается из насоса.

Иначе обстоит дело при откачке конденсирующихся паров, которые не могут быть сжаты до давления, превышающего давление насыщения при данной температуре, так как дальнейшее сжатие приводит не к росту давления, а к конденсации некоторого количества паров, и давление в камере насоса остается постоянным, не достигая значения. При конденсации в камере насоса выхлопной клапан открывается вследствие резкого гидравлического удара конденсата и масла о пластину клапана. Конденсат смешивается с маслом и ухудшает его свойства. Попавший в масло конденсат испаряется в камере насоса и увеличивает полное остаточное давление. Давление насыщения большинства встречаемых в практике паров при комнатной Температуре лежит выше 1,33 х 103 Па, т. е. практически может быть достигнуто только в насосах с масляным уплотнением, имеющих выпускное давление, равное атмосферному; в других насосах (двухроторных, турбомолекулярных, струйных), не работающих против атмосферного давления, эти пары не конденсируются.

Наиболее часто встречается необходимость в откачке паров воды. Вода, попавшая в масло, помимо образования трудноразделимой эмульсии масло — вода, вызывает целый ряд химических взаимодействий, ведущих к ухудшению смазывания, перегреву и осмолению насоса, не говоря уже о повышении предельного остаточного давления и коррозии отдельных деталей насоса.

Эффективным способом предотвращения конденсации паров в насосе является напуск так называемого балластного газа в камеру насоса в добавление к поступившему в нее пару после отделения камеры от впускного патрубка насоса. В качестве балластного газа обычно используется атмосферный воздух, поступающий в камеру через отдельное отверстие с обратным клапаном, связанное с краном-дозатором трубкой или отверстием в корпусе. Устройство для напуска балластного газа называют газобалластным, насос с таким устройством — газобалластным насосом. Практически все насосы выпускаются сейчас с газобалластным устройством.

В камере газобалластного насоса сжимается смесь паров с балластным газом, причем количество балластного газа определяется из условия, чтобы к моменту достижения смесью давления выхлопа парциальное давление паров не достигало давления насыщения. То есть чтобы выполнялись условия р6 + (рг + рп) V/Vcx больше либо равно р , ар V /V меньше либо равно р , где рб — давление сжатого балластного газа; рг — давление газа во входном сечении насоса; рп — давление пара во входном сечении насоса; рнас — давление насыщенного пара при рабочей температуре насоса; рвып — выпускное давление насоса; Vpc — объем рабочей камеры в момент «конец всасывания»;

V — объем рабочей камеры в момент «конец сжатия».
Условие справедливо при изотермическом процессе сжатия в насосе, что не совсем строго для реального насоса, но позволяет легко определить поток балластного газа Q'6, необходимый для предотвращения конденсации. В случае откачки только конденсируемых паров (ррг примерно равно 0) формула упрощается: Q\ больше либо равно SJJn (Р....../Р -1). Уравнение показывает, что поток балластного газа Q'6 должен быть тем больше, чем больше быстрота действия SH насоса, давление пара Рп во входном сечении и чем меньше давление насыщенных паров (т. е. температура масла в насосе). Отметим, что если давление насыщенных паров Рнас численно равно выпускному давлению Рвып, насос не требует балластного газа для предотвращения конденсации. Например, насос со специальным маслом, работающий при температуре примерно 380 К, способен откачивать пары воды без напуска балластного газа. Допустимое давление паров воды на входе является паспортной характеристикой газобалластного насоса. Другой важной характеристикой газобалластного насоса является количество (масса) паров, которое он откачивает в единицу времени при заданном давлении паров на входе, т. е. массовая производительность М’п насоса по откачиваемому пару. Ее легко подсчитать, представив уравнение состояния для откачиваемой в единицу времени порции пара в виде PnSH = = М' JM RQT, где М — молекулярная масса пара; SH — быстрота действия насоса, л/с; Рп— давление пара на впуске, Па; R0 — 8,3 х 103 Дж/(К х кмоль) — универсальная газовая постоянная; Т— температура пара, К. Для паров воды (М= 18) при Т= 293 К массовая производительность насоса определяется формулой, кг/ч:

М'п = 2,67 - 10~5 SHPn.

Формулы справедливы, конечно, только в том случае, если масло при откачке не загрязняется конденсатом, т. е. предельное остаточное давление насоса по откачиваемым парам рпост = 0. В противном случае, если масло загрязняется конденсатом (например, из-за недостаточной подачи балластного газа или из-за родства откачиваемых паров и масла, когда пары растворяются в масле), предельное остаточное давление насоса по откачиваемым парам р не равно 0 и наблюдается уменьшение массовой производительности насоса по парам, что может быть учтено, если в формулы вместо рп представить (рп - рпост). Следует иметь в виду, что газобалластные насосы весьма эффективны при откачке паров воды, но при откачке паров, растворяющихся в масле из паровой фалы (например, пары бензина, бензола), их эффективность снижается, о чем можно судить по снижению массовой производительности в сравнении с расчетным значением. Пример: определить допустимое давление паров воды для газобалластного насоса с быстротой действия 6 л/с при потоке балластного газа Q'6 = 40 м3 х Па/с, выпускном давлении Рвып = 1>2 - 105 Па и температурах масла 60, 70 и 80 °С.

Находим давление насыщенных паров при указанных температурах Р60 = 2 - 104 Па, Р70 = 3,2 - 104 Па, Р80 = 4,8 -- 104 Па, и по формуле находим допустимые давления паров воды Р соответственно 1,33 х 103; 2,42 х 103 и 4,45 х 103 Па. Поток балластного газа может регулироваться с помощью крана-дозатора.
В двухступенчатых насосах напуск балластного газа, как правило, производится только в выхлопную ступень, так как в первой высоковакуумной ступени сжатия или не происходит, или его не-достаточно для конденсации паров. Ввиду того что балластный газ все же перетекает через механизм насоса на сторону всасывания, предельное остаточное давление одноступенчатых насосов увеличивается примерно до 102 Па. Предельное остаточное давление двухступенчатых насосов при работе с балластным газом увеличивается до 1— 10 Па в зависимости от конструкции и степени износа механизма. При работе газобалластного насоса из выпускного патрубка выходит парогазовая смесь, содержащая насыщенные пары при температуре насоса 333 К и выше. По мере движения по выпускному трубопроводу, стенки которого имеют комнатную температуру, пар конденсируется на них и конденсат может стекать обратно в насос, особенно если выпускной трубопровод имеет длинные вертикальные участки. В таких случаях в трубопроводе около насоса размещают отделитель конденсата. Если пары, выделяющиеся в откачиваемом сосуде, имеют высокую темпера-туру и могут конденсироваться на стенках впускного трубопровода, на входе насоса должен быть установлен отделитель конденсата аналогичной конструкции, так как попадание, например, капель воды приводит к образованию эмульсии в механизме насоса.

При очень высоком впускном давлении паров (свыше 4 х 103 — 5,3 х 103 Па) используются водоохлаждаемые конденсаторы. Давление паров на выходе конденсатора не превышает допустимого значения для газобалластного насоса. Во избежание конденсации паров в камере самого насоса корпус должен быть прогрет до рабочей температуры масла перед началом откачки паров. Для этого насос включают примерно за час до начала откачки и при закрытом впускном патрубке дают работать с полным напуском балластного газа.

Практические указания по эксплуатации. К каждому насосу прилагается достаточно подробная инструкция по эксплуатации, однако ввиду широкого применения насосов с масляным уплотнением полезно запомнить несколько общих правил их эксплуатации.

Небольшие насосы с быстротой действия до 3—5 л/с часто не закрепляются на фундаменте, а устанавливаются прямо на полу. При этом рекомендуется ставить насос в неглубокий металлический противень (на случай течи масла) и подкладывать под него резиновый лист для уменьшения шума. Металлическая цельнотянутая труба в качестве вакуумной коммуникации всегда предпочтительней резинового шланга, так как вследствие газовыделения резины может быть затруднено получение низких давлений. Между насосом и откачиваемым сосудом должен быть предусмотрен компенсатор вибрации, в качестве которого может быть использован кусок вакуумного резинового шланга. При использовании коротких кусков резинового шланга для соединения металлических труб следует насколько возможно сближать торцы труб.

Средние и крупные насосы обычно устанавливаются на фундаменте, впускной патрубок соединяется с магистралью откачки с помощью сильфона или другого гибкого элемента для компенсации вибраций. Перед присоединением к вакуумной системе полезно проверить создаваемое насосом полное остаточное давление при работе «на себя», т. е. с заглушкой на впускном патрубке, к которой присоединен манометрический преобразователь. Попадание твердых предметов в рабочую камеру приводит к поломке насоса, поэтому входной патрубок насоса, отсоединенного от вакуумной системы, должен быть тщательно закрыт. Особое внимание при эксплуатации должно быть обращено на сохранение качества и количества залитого в насос масла.

Не следует без особой необходимости допускать работу насоса при высоких впускных давлениях во время откачки сосуда от атмосферного давления, так как это может привести к уносу капель масла с выхлопными газами; поэтому желательно дросселировать поток газа, не полностью открывая кран на входе насоса.
Если насос не обеспечивает необходимого предельного остаточного давления, причины этого должны находиться и устраняться в следующем порядке:

1)    недостаток масла в насосе — следует долить масло;

2)    плохое качество масла или его загрязнение конденсатом — можно попытаться очистить масло, включив подачу балластного газа при работе насоса с закрытым впускным патрубком. Если в течение 15—20 мин предельное остаточное давление не уменьшается, следует сменить масло;

3)    загрязнение, коррозия или поломка клапанов — необходимо вскрыть клапанную коробку и устранить неисправности;

4)    загрязнение каналов для подвода масла в камеру насоса — устранение этого дефекта связано обычно с переборкой насоса;

5)    износ, нарушение нормальной работы или поломка деталей — устранение таких неисправностей также связано с полной или частичной переборкой насоса.

3.    Механические вакуумные насосы с деформируемой камерой.

Принцип действия. Как уже отмечалось, существенным недостатком механических вакуумных насосов с масляным уплотнением является проникновение паров масла и продуктов его крекинга в откачиваемый сосуд. Для создания так называемого чистого вакуума были разработаны механические насосы с деформируемой рабочей камерой.

Принцип действия насоса заключается в последовательном цикличном изменении объема эластичной камеры при ее деформации роликами. При вращении турникета с тремя роликами по часовой стрелке происходит всасывание газа и перенос его к выпускному клапану, где газ выбрасывается в атмосферу. При работе насоса в эластичной камере периодически создается разрежение. С тем, чтобы исключить сжатие камеры атмосферным давлением, в полости насоса создается разрежение. Для этого в корпусе насоса эластичная камера закреплена двумя кольцами таким образом, чтобы образовались две рабочие камеры, причем одна камера предназначается для откачки рабочего сосуда, а другая камера — для откачки внутренней полости самого насоса. Камеры соединены последовательно друг с другом. В каждой рабочей камере установлен свой турникет с тремя роликами. Существенным недостатком насоса является малый межремонтный период (500—1000 ч) из-за недостаточной прочности и износостойкости деформируемой камеры, которая изготовляется обычно из пластика типа полиуретана.

Практические указания по эксплуатации. При аварийном прорыве атмосферы или при заклинивании выпускного клапана эластичная камера может чрезмерно раздуться, что приведет к быстрому выходу ее из строя. Поэтому нельзя начинать откачку сосуда, находящегося при атмосферном давлении, если в насосе уже достигнуто предельное остаточное давление или если насос работает только на откачку собственного объема. Давление в откачиваемом сосуде не должно превышать давление в собственном объеме насоса более чем на 5 х 103 Па. При длительной работе насоса, особенно при давлении более 1000 Па, из-за разогрева заметно снижаются прочностные характеристики материала гибкой камеры и увеличивается износ, уменьшающий ресурс работы насоса. Насосы этого типа не имеют газобалластного устройства. Поэтому при откачке конденсирующихся паров и газов в выпускном патрубке насоса скапливается конденсат, который не только увеличивает предельное остаточное давление, но и нарушает работу насоса.

Предельное остаточное давление насосов с деформируемой камерой составляет обычно 10 1 Па и определяется, главным образом, парами воды. Большую опасность для работы насоса представляет попадание внутрь эластичной камеры посторонних твердых частиц. При наличии такой опасности во входном патрубке насоса должна быть установлена сетка с размерами ячейки 1x1 мм.

4.    Двухроторные вакуумные насосы.

Принцип действия. Двухроторные вакуумные насосы, работающие по принципу давно известной воздуходувки Рутса, широко используются в области среднего вакуума.

Схема действия двухроторного вакуумного насоса: в рабочей камере насоса расположены два ротора, напоминающие в сечении цифру 8, синхронно вращающиеся навстречу друг другу. Синхронность вращения обеспечивается с помощью закрепленных на валах роторов шестерен связи, вынесенных за пределы рабочей камеры. Во время работы роторы не касаются друг друга и стенок рабочей камеры, что достигается благодаря их точному профилированию и регулировке зазоров при сборке.

Основными достоинствами двухроторных насосов является отсутствие трения в роторном механизме, простота устройства и возможность хорошей динамической балансировки роторов, в связи с чем достигаются большие скорости вращения и высокая быстрота действия насосов при сравнительно малых габаритах и массе. Имеет место ряд последовательных положений роторов при работе, что помогает понять процесс передачи газа со стороны впуска (Слева) на сторону выпуска (направо). Нетрудно понять, что газ передается постоянными объемами, находящимися между корпусом и впадинами роторов.
Быстрота действия двухроторного насоса определяется объемом, удаляемым впадинами обоих роторов в единицу времени, с учетом обратного перетекания газа с выхода на вход через зазоры в роторном механизме. Эти зазоры сравнительно велики (даже у самых маленьких насосов зазоры немногим меньше 0,1 мм), и если бы двухроторные насосы работали с выхлопом в атмосферу, их предельное остаточное давление составляло бы около 104 Па. Поэтому двухроторные насосы имеют на выхлопе форвакуумный насос (чаще всего механический вакуумный насос с масляным уплотнением), иначе они не способны создать низкие давления. Характерна зависимость быстроты действия двухроторного вакуумного насоса от впускного давления.

Конструкция и характеристики. Быстрота действия двухроторного насоса тем больше, чем меньше отношение Р / р (сжатие), т. е. тем больше быстрота действия 5H форвакуумного насоса при неизменном потоке газа.

В двухроторном насосе газ передается с входа на выход порциями постоянного объема, т. е. объем камеры при этом не уменьшается. Сжатие передаваемого газа происходит практически мгновенно от давления рнач до давления Р при сообщении полости, передающей газ, со стороной выпуска двухроторного насоса, так как в нее устремляется газ со стороны выпуска. Поэтому затрачиваемая двухроторным насосом на выталкивание газа мощность относительно больше, чем она была бы у механического вакуумного насоса с масляным уплотнением, работающего при таких же условиях. Однако этот недостаток при работе в области низких давлений 103—10 '1 Па несуществен, так как абсолютное значение этой мощности очень мало. Потеря мощности в приводе, подшипниках и шестернях связи также невелика, а трение в роторном механизме отсутствует, поэтому у двухроторных насосов в области давлений менее 6,5—102 Па потребление мощности на единицу быстроты действия (удельная мощность) значительно меньше, чем у насосов с масляным уплотнением.

Двухроторные вакуумные насосы часто объединяют в агрегаты с механическими вакуумными насосами, предназначенными для предварительного разрежения. В качестве примера можно привести агрегат, состоящий из последовательно соединенного двухроторного насоса с механическим вакуумным насосом. Привод обоих насосов осуществляется от одного электродвигателя. Применение двухроторных вакуумных насосов особенно целесообразно в системах централизованного форвакуума, при откачке установок обезгазивания и сушки деталей, в которых наблюдается значительное газовыделение.

Двухроторные вакуумные насосы выгодно применять для откачки электровакуумных приборов, не требующих давления, меньшего 5 х И) 2 Па. Состав остаточных газов двухроторных насосов такой же, как и у механических вакуумных насосов с масляным уплотнением, т. е. несмотря на отсутствие смазки в роторном механизме, двухроторные насосы не обеспечивают безмасляного вакуума, так как из-за малых значений наибольшего сжатия (не более 100) пары масла поступают на вход со стороны форвакуума из камеры шестерен связи и их подшипников.

Практические указания по эксплуатации. При эксплуатации двухроторных насосов необходимо периодически контролировать уровень масла в полостях под торцевыми крышками (через смотровые окна), отсутствие течей масла из ввода вращения и исправность механизма насоса (отсутствие подозрительных шумов и стуков при запуске, работе и остановке). Недостижение паспортного предельного остаточного давления обычно связано с течью в системе или во фланцах или с неисправностью форвакуумного насоса, так как течи в двухроторных насосах возникают очень редко (обычно в результате неудачной переборки насоса), а небольшие случайные задиры роторов мало сказываются на предельном остаточном давлении.

5.    Эжекторные насосы. Принцип действия эжекторных насосов состоит в следующем. Рабочее тело (газ, пар или вода), имеющее повышенное давление, поступает в сопло, где потенциальная энергия сжатого рабочего тела преобразуется в кинетическую энергию струи. Струя, получившая высокую скорость и имеющая низкое статическое давление, на выходе из сопла попадает в камеру смешения. В камере смешения откачиваемый газ увлекается рабочим телом и интенсивно смешивается с ним. Эта смесь, обладающая несколько меньшей, но все еще значительной скоростью, попадает в диффузор, в котором сжимается за счет перехода кинетической энергии струи в потенциальную энергию давления.

На место удаляющейся из камеры смешения смеси поступают все новые порции газа, которые, в свою очередь, также смешиваются и увлекаются рабочим телом. На выходе из диффузора давление смеси будет меньше давления рабочего тела на входе в сопло, но значительно выше давления откачиваемого газа в камере смешения. Эжекторные насосы работают в области давлений от атмосферного до 1 Па и могут применяться в вакуумных системах в качестве самостоятельных насосов или насосов предварительного разрежения.

Конструкции и характеристики. Водоструйные насосы предназначаются для откачки воздуха и других газов от атмосферного давления до 100 Па. Работа насоса основана на использовании откачивающего действия струи воды, которая под давлением 2,5 х 105 Па истекает из сопла. Откачиваемый газ в сфере действия струи перемешивается с нею, и смесь воды с газом попадает затем в цилиндрическую камеру, за которой установлен расширяющийся диффузор. В диффузоре статическое давление смеси воды и газа за счет уменьшения скорости повышается до атмосферного давления. Смесь воды с газом стекает в бачок, откуда сливается в дренажную линию, присоединенную к патрубку. Для выхода газа из бачка во фланце предусмотрено отверстие. Насос присоединяется к вакуумной системе через кран.

Резервуар предназначен для приема воды, засасываемой через диффузор из бачка в случае аварийного прекращения ее подачи. Через кран подается воздух в резервуар при остановке насоса, что также предотвращает всасывание воды.

Производительность насоса возрастает с повышением давления воды. Предельное остаточное давление насоса практически равно упругости пара воды и увеличивается с повышением ее температуры.
Водоструйные насосы часто применяются в системах безмасляной откачки, например в системе предварительного разрежения высоковакуумного парортутного насоса, для сорбционного насоса, а также в качестве последней ступени пароэжекторного насоса.

Пароэжекторные насосы предназначаются для безмасляной откачки больших сосудов до давлений 1—10-1 Па. Принципиальная схема четырехступенчатого пароэжекторного насоса состоит из трех пароструйных ступеней и водоструйной ступени, работающей с выхлопом в атмосферу. Как правило, в высокопроизводительных многоступенчатых эжекторных насосах за каждой пароструйной ступенью устанавливаются конденсаторы, в которых пар конденсируется, а газ откачивается последующей
ступенью. В малых насосах ввиду небольшого расхода пара по сравнению с высокопроизводительными насосами в пароструйных ступенях насоса можно обойтись без промежуточных конденсаторов, что позволяет упростить конструкцию и уменьшить габариты насоса, хотя это влечет за собой несколько повышенный расход пара.

В некоторых насосах отсутствуют промежуточные конденсаторы. Пар под давлением 4 х 105 Па подводится к соплам пароструйных ступеней. При этом каждая последующая пароструйная ступень откачивает не только газ, но и весь рабочий пар, поступивший из предыдущей ступени.

Последняя пароструйная ступень откачивается водоструйной ступенью, к которой подается вода также под давлением 4 х 105 Па. Пройдя через сопло водоструйной ступени, вода поступает в расширительный бак, где гасится скорость водяного потока, и сливается в дренажную трубу.

6.    Струйные насосы.

7.    Турбомолекулярные насосы.

8.    Адсорбционные насосы.

9.    Испарительные геттерные насосы. Испарительные геттерные насосы относятся к сорбционным насосам, в которых поглощение газов осуществляется за счет физической адсорбции, хемосорбции, химических реакций и растворения газов в пленке металлического геттера, создаваемой методом термического испарения. В качестве геттера в таких насосах может быть использован любой активный металл, применяемый для распыляемых геттеров в электровакуумных приборах; однако из условий эксплуатационного удобства в промышленных насосах применяется пока только титан. Титан образует прочные нелетучие соединения или твердые растворы почти со всеми газами, имеющимися в вакуумных системах, за исключением инертных газов и углеводородов.

Отличие в механизме поглощения различных газов приводит к тому, что быстрота действия испарительных геттерных насосов по разным газам неодинакова. Равновесное давление газа над пленкой геттера зависит от ее температуры, свойств образующихся соединений, от степени насыщения пленки газом и т. п.

В насосах постоянно обновляемая пленка геттера непрерывно поддерживается в активном состоянии, поэтому предельное остаточное давление насоса определяется газовыделением из распыленного геттера и элементов конструкции насоса. Отметим, что на поверхности титановой пленки при комнатной температуре происходит реакция синтеза метана, образующегося из всегда присутствующих в системе углерода и водорода. При охлаждении титановой пленки до температуры кипения жидкого азота скорость реакции синтеза метана резко уменьшается, а быстрота действия насоса по активным газам (N2,02, СО и Н2) возрастает из-за увеличения их коэффициента прилипания.

Коэффициент прилипания для чистых пленок титана, не сорбировавших газы, при комнатной температуре составляют 0,4—0,5 для N2; 0,6—0,7 для 02 и СО и примерно 0,05 для Н2; при охлаждении пленки жидким азотом коэффициент прилипания увеличивается до 0,9—1 для N2, 02, СО и до 0,4— 0,5 для Н2.

Конструкции и характеристики. Сверхвысоковакуумный агрегат состоит из испарительного геттерного насоса, азотной ловушки и паромасляного диффузионного насоса. В испарительном геттерном насосе титан конденсируется на внутренней стенке цилиндрического экрана, охлаждаемой жидким азотом, подаваемым из сосуда Дьюара. Испаритель титана содержит запас титановой проволоки и механизм для ее периодической подачи в водоохлаждаемый медный тигель — анод. Испарение титана происходит путем разогрева титановой проволоки электронной бомбардировкой с помощью имеющейся в испарителе электронной пушки. Такой способ нагрева обеспечивает значительную скорость испарения титана при минимальном тепловом излучении, что определяет сравнительно небольшой расход азота (приблизительно 5 л/ч). Небольшой экран, установленный вблизи испарителя, практически исключает попадание титана в откачиваемый сосуд. Предельное остаточное давление агрегата составляет 10 10 Па, быстрота действия по водороду в диапазоне давлений 10ц—10"8 Па в 2,8 раза больше, чем по азоту. Такая разница в быстроте действия по этим гаммам объясняется, главным образом, более высокой проходимостью входного патрубка насоса по водороду.

В некоторых вакуумных установках (для исследования термоядерных реакций, имитации космических условий и т. п.) титан конденсируется на охлаждаемые жидким азотом экраны, установленные непосредственно внутри сосуда, причем рабочая зона сосуда экранирована от попадания паров титана. Такое устройство получило название азотит. При этом достигаются высокая быстрота действия (до сотен тысяч л/с) и предельное остаточное давление до 10-10—1011 Па.

10.    Электродуговые геттерные насосы. Испарение геттера в электродуговых геттерных насосах происходит с поверхности титанового катода за счет высокой концентрации энергии в катодном пятне электрической дуги постоянного тока. Плотность тока в катодном пятне достигает Ю10—II11 А/м2. Катодное пятно хаотически перемещается по поверхности титана, благодаря чему обеспечивается равномерное испарение материала катода. Благодаря тому, что дуга горит в парах испаряющегося металла, создаются условия для ее стабильного горения при сколь угодно низком давлении остаточных газов.

Конструкции и характеристики. В корпусе, являющемся анодом системы, помещен катод с поджигающим устройством, собранный на общем фланце. Катод представляет собой титановый диск, который крепится титановыми шпильками к медному основанию, охлаждаемому водой. Боковые поверхности основания, титанового диска и электрического ввода закрыты металлическим экраном, предотвращающим возникновение дуги между поверхностями этих деталей и корпусом насоса — анода. В экране предусмотрен вырез для подвода поджигающего электрода. Поджигающий электрод через балластное сопротивление, ограничивающее ток короткого замыкания, соединен с корпусом насоса.
Питание дуги осуществляется от источника постоянного тока. Возбуждение дуги производится кратковременным закорачиванием катода с поджигающим электродом. Для этого подают напряжение на электромагнит, который подводит электрод к катоду. В момент отвода электрода возвратной пружиной между катодом и анодом — корпусом насоса возникает устойчивая электрическая дуга. Напряжение поджига дуги лежит в пределах 25—35 В, а ток стабильного горения дуги составляет примерно 140 А при напряжении 20—21 В. Скорость испарения титана при этом достигает 15— 17 г/ч. Для уменьшения скорости испарения титана с целью более рационального его расходования применяют периодический режим работы насоса. Причем чем ниже давление в откачиваемом сосуде, тем больше делают паузу между моментами включения насоса. При испарении титана на стенках насоса непрерывно образуется свежая активная пленка, на поверхности которой и происходит поглощение активных газов. Для откачки инертных газов к нижнему фланцу насоса через водоохлаждаемую ловушку присоединяется дополнительный паромасляный диффузионный насос, быстрота действия которого должна составлять 2—5% быстроты действия электродугового геттерного насоса.

Верхним фланцем, в сечении которого установлен отражательный экран, насос подсоединяется к откачиваемому сосуду. Экран предусмотрен для предотвращения попадания испаряющегося титана во внутреннюю полость откачиваемого сосуда. Быстрота действия геттерных электродуговых насосов может достигать 104—105 л/с. Предельное остаточное давление насоса составляет 10 5 Па при откачке инертных газов дополнительным насосом и 10"4 Па без такой откачки дополнительным насосом.

Электродуговые геттерные насосы используют простые источники питания, снабжены большим количеством геттерного материала и просты по устройству.

11.    Ионно-геттерные насосы. Геттерные насосы малоэффективны при откачке инертных газов и для получения низких предельных остаточных давлений (менее 10 4 Па) требуют применения дополнительных насосов. В то же время при возбуждении и ионизации откачиваемых газов электронным потоком или в электрическом разряде поглощение титановой пленкой идет более интенсивно, причем благодаря ионизации откачиваются и инертные газы. В современных ионно-геттерных насосах обычно совмещены геттерные и ионные методы откачки. Принцип действия ионно-геттерных насосов основан на поглощении газов периодически или непрерывно наносимой пленкой титана и улучшении откачки инертных газов и углеводородов путем ионизации и улавливания положительных ионов. Испарение титана в ионно-геттерных насосах происходит, как правило, из твердой фазы.

Конструкции и характеристики. Принципиальная схема ионно-геттерного насоса выглядит следующим образом: испарение титана на стенки водоохлаждаемого корпуса насоса производится из твердой фазы с прямонакальных испарителей, представляющих собой молибденовый U-образный стержень (керн), на который нанесен слой титана. Ионизация, необходимая для откачки инертных газов и углеводородов, осуществляется электронами, эмиттируемыми термокатодом. Эффективность ионизации повышена за счет увеличения длины пробега электронов. Это достигается применением «прозрачного» для электронов анода, на который подается положительное относительно катода напряжение 1000—1200 В. Анод, выполненный из молибденовой проволоки, используется также и в качестве внутреннего нагревателя для обезгази-вания насоса при подготовке его к работе. Коллектором ионов является корпус насоса с напыленной титановой пленкой, в которую и внедряются образовавшиеся ионы. Таким образом, так же как и в геттерных насосах, химически активные газы поглощаются пленкой титана, непрерывно наносимой на внутреннюю поверхность корпуса насоса, а откачка инертных газов осуществляется путем ионизации и последующего внедрения ионов в пленку геттера.

В составе остаточных газов ионно-геттерных насосов, помимо обычно присутствующих в вакуумных системах водорода (массовые числа 2 и 1), паров воды (массовые числа 18 и 17), а также азота и окиси углерода (массовое число 28), наблюдаются аргон (массовое число 40) и метан (массовые числа 16 и 15).
Быстрота действия насоса зависит от впускного давления для воздуха; увеличение быстроты действия при откачке ионно-геттерного насоса достигается с помощью дополнительного диффузионного насоса. Уменьшение быстроты действия при давлениях выше 10 4 Па объясняется большей степенью насыщения пленки титана при высоких давлениях (при постоянной скорости его испарения), вследствие чего уменьшается коэффициент прилипания газа.

Предельное остаточное давление геттерно-ионных насосов составляет около 10-7 Па, а давление запуска около 10”1 Па, так как при более высоком давлении возникает опасность перегорания вольфрамового катода.

Дальнейшим развитием ионно-геттерных насосов с испарением титана явились орбитронные ионно-геттерные насосы, в которых удачно сочетается простота конструкций с высокой стабильностью работы. В корпусе помещен центральный электрод (анод) с титановым цилиндром. Верхняя часть электрода защищена трубкой. На пластине укреплен керамический стержень, на котором крепится катод, изготовленный из вольфрамовой проволоки. Токовводом и экраном катода служит проволочка из тантала. Корпус насоса заземлен, а на центральный электрод подается положительное напряжение 4—5 кВ. Пластина и трубка имеют одинаковый с катодом потенциал.

Расположение и конфигурация катода и танталового токоввода выполнены таким образом, что осевая и радиальная симметрия электрического поля нарушены. Кроме того, к катоду приложено положительное напряжение смещения (от 50 до 250 В) относительно корпуса насоса. В результате электроны, эмиссируемые катодом, движутся со скоростью, имеющей осевую, радиальную и тангенциальную составляющие. Ввиду того что электрическое поле несимметрично и векторы скоростей электронов направлены под углом к силовым линиям электрического поля, направление движения электронов будет непрерывно меняться и их попадание на центральный электрод, имеющий малое поперечное сечение, затруднено. Попадание электронов на корпус также исключено благодаря положительному смещению на катоде. В результате электроны движутся по орбитам достаточно долго, проходят большое расстояние, и интенсивность ионизации газа резко увеличивается. Часть электронов, траектории которых проходят вблизи центрального электрода, попадает на титановый цилиндр и разогревает его до температуры 1430 К. При этом происходит испарение титана из твердой фазы и его конденсация на внутренней поверхности корпуса насоса. Так же, как и в предыдущей конструкции ионно-геттерного насоса, откачка активных газов орбитронным ионно-геттерным насосом идет путем поглощения их пленкой титана, непрерывно наносимой на внутреннюю поверхность корпуса насоса. В отличие от описанного выше ионно-геттерного насоса в орбитронном ионно-геттерном насосе благодаря увеличению длины свободного пути электронов (до нескольких метров) быстрота откачки инертных газов значительно увеличена.

Следует отметить, что примененный в этом насосе испаритель при достаточно большом запасе испаряемого вещества имеет небольшую тепловыделяющую поверхность, что позволяет размещать внутри насоса дополнительный охлаждаемый жидким азотом экран, на который наносится пленка титана, при этом резко уменьшается предельное остаточное давление насоса (менее 10"11 Па).

Большим достоинством геттерно-ионных насосов, как и других сорбционных насосов, является отсутствие рабочей жидкости, что позволяет получать с их помощью вакуум, практически свободный от углеводородных загрязнений (безмасляный вакуум). Эти насосы не требуют охлаждаемых ловушек на входе и часто присоединяются к откачиваемому сосуду без промежуточного крана, благодаря чему эффективно используется быстрота действия насоса. Как все сорбционные насосы, геттерно-ионные насосы не боятся аварийного отключения энергии, так как при этом наблюдается довольно медленный рост давления в откачиваемом сосуде, они бесшумны в работе, не создают вибраций, не требуют непрерывной работы насосов предварительного разрежения. Насосы с термическим испарением титана очень быстро запускаются в работу.

Основные недостатки ионно-гетерных насосов с термическим испарением титана состоят в отсутствии саморегулирования скорости испарения активного вещества, наличии накаленных элементов в электродной системе и в некоторой сложности источников электропитания.

Практические указания по эксплуатации. При использовании геттерных насосов желательно обеспечивать безмасляную предварительную откачку сосуда до давления менее 10 1 Па с помощью адсорбционных насосов или паромасляных диффузионных насосов с эффективными ловушками. Не следует допускать чрезмерно длительной откачки сосуда механическим насосом с масляным уплотнением из-за возможного загрязнения сосуда углеводородами. Эксплуатация насосов связана с необходимостью периодической чистки внутренних поверхностей насоса от нанесенной пленки титана. При механической чистке насосов от слоев нанесенного титана следует использовать респиратор или плотную марлевую повязку для защиты от вдыхания титановой пыли и рукавицы для защиты рук от небольших вспышек на титановой пленке, которые могут возникнуть при использовании металлической щетки.

12.    Магнитные электроразрядные насосы.

13.    Конденсационные насосы. При температурах, близких к температуре жидкого водорода или гелия, большинство веществ имеет весьма низкую упругость паров. Так, при температуре, близкой к точке кипения водорода, давление насыщенных паров 02 составляет 10-" Па, N2 и СО — 10“9 Па, а Ат — 10-15 Па. При температуре, близкой к точке кипения гелия, упругость насыщенного пара Н2 составляет 10 4 Па, a Ne — 10-17 Па. Поверхность, заключенная в герметичный сосуд и охлажденная до температур, близких к точке кипения водорода, будет конденсировать молекулы всех газов, за исключением Не, Н, и Ne. При охлаждении поверхности до температуры, близкой к точке кипения гелия, на ней будут конденсироваться молекулы всех газов, кроме гелия.

Конструкции и характеристики. По принципу конденсации газов поверхностью, охлажденной до точки кипения водорода (20,4 К), выполнен водородный конденсационный насос.

Основным элементом насоса является медный сосуд, заполняемый жидким водородом. Для уменьшения теплопритока от окружающих стенок сосуд окружен цилиндрическим медным экраном, охлаждаемым жидким азотом. Задний экран с впаянной азотной ловушкой также охлаждается жидким азотом.
Для откачки не конденсирующихся при температуре жидкого водорода газов (водород, гелий, неон) и создания предварительного разрежения насос снабжен паромасляным диффузионным насосом. Для предотвращения попадания паров масла и продуктов его разложения из насоса предусмотрены военная ловушка и жалюзийная азотная ловушка. Жидкий азот для охлаждения экранов и ловушки подается из сосудов Дьюара.

Питание насоса жидким водородом осуществляется от автономного разжи-жителя. В последнее время все большее распространение получают конденсационные насосы, в которых для охлаждения поверхностей используют газовые холодильные машины — криогенераторы: существует конденсационный насос с криогенератором, работающим по так называемому обращенному циклу Стирлинга. В корпусе насоса размещена криопанель, изготовленная из медной пластины, являющаяся откачивающим элементом насоса. Криопанель имеет хороший тепловой контакт со второй ступенью машины. Для снижения теплопритока к криопанели со стороны теплых стенок насоса и откачиваемого сосуда предусмотрен жалюзийный экран, который имеет хороший тепловой контакт с первой ступенью машины. Температура экрана поддерживается на уровне 90—100 К. В картере размещены компрессорный поршень и шатуны привода, закрепленные на эксцентриковых втулках и вала встроенного электродвигателя. Картер криогенератора через кран заполняется газообразным гелием под давлением (16—20) х 105 Па.

Криогенератор работает следующим образом. Газ, сжатый компрессорным поршнем до давления (35—40) х 105 Па, поступает в водяной холодильник, где отводится теплота сжатия. Затем газ по каналу проходит через сетчатый регенератор, расположенный в вытеснителе. Часть газа поступает в полость расширения первой ступени, а другая часть, пройдя регенератор, поступает в полость расширения второй ступени. При движении вытеснителя вниз происходят расширение газа в обеих ступенях и его охлаждение. В описываемой конструкции хладопроизводительность первой ступени составляет примерно 10 Вт при 100 К, а второй ступени — примерно 4 Вт при 25 К.

Одним из главных недостатков конденсационных насосов, использующих встроенные криогенераторы, является пока еще малая длительность непрерывной работы, составляющая всего 500—1000 ч. Удельная быстрота откачки и предельное остаточное давление конденсационных насосов могут быть рассчитаны на основе баланса потоков газа, конденсирующегося на холодной поверхности и испаряющегося с нее. Быстрота действия современных конденсационных насосов достигает 105 л/с и более, а предельное остаточное давление составляет менее 10“7 Па.



Следующее: ВЫКЛЮЧАТЕЛЬ Предыдущее: ВЗРЫВАТЕЛИ

Похожее: ВОДООТЛИВНЫЕ НАСОСЫ

ПОДЕЛИСЬ!