На квантовом уровне объекты могут иметь две температуры одновременно

На квантовом уровне объекты могут иметь две температуры одновременно

Квантовая механика может казаться черной магией для многих из вас, ведь ее не так сложно понять. Ещё хуже, когда мы начинаем сравнивать нашу реальность с квантом.

Тогда мы быстро поймем, что там все возможно, почти так же, как в научно-фантастических фильмах. Это лучше всего продемонстрировать последние исследования ученых из Университета Эксетера. Это открытие создаёт много путаницы для понимания квантовых состояний, но в то же время оно представляет много интересных возможностей и открывает двери для более продвинутых исследований.

Физики заметили, что на квантовом уровне объекты могут иметь две температуры одновременно. Старое правило неопределенности Гейзенберга утверждало, что чем точнее мы измеряем положение квантовой частицы, тем менее точно мы сможем узнать ее импульс. Между тем, новый эксперимент подтверждает, что чем больше мы хотим измерять температуру объекта, тем меньше информации мы получаем о его энергии.

В случае обычного термометра мы можем измерить точную температуру объекта, но в квантовом мире термометр может одновременно показывать две экстремальные температуры объекта, и, что интересно, обе будут правильными. Исследователи объясняют, что взаимодействие квантовых объектов может не только создавать суперпозиции энергетических состояний, но и излучать энергию.

Первое правило неопределенности игнорировало эти эффекты, потому что это не важно для неквантовых объектов, но очень важно, когда мы пытаемся измерить температуру квантовой точки. Поэтому новое правило создает теоретическую основу для учета этих взаимодействий между объектами.

Хотя правила неопределенности незаметны для невооруженного глаза, но когда мы планируем строить все больше и больше электронных систем в будущем, такие квантовые эффекты должны быть приняты во внимание.