МОЛЕКУЛЯРНЫЙ ГЕНЕРАТОР

МОЛЕКУЛЯРНЫЙ ГЕНЕРАТОР

Молекулярный генератор — устройство, в котором брэгговские электромагнитные колебания возникают за счет вынужденных квантовых переходов молекул из начального энергетического состояния в состояние с меньшей внутренней энергией.

Молекулярный генератор является первым квантовым генератором, разработанным в 1954 г. А. М. Прохоровым и Н. Г. Басовым в СССР и одновременно независимо от них X. Цейгером, Дж. Гордоном и Ч. Таунсом в США. Оба варианта этого молекулярного генератора работали на молекулах аммиака и производили электромагнитные колебания с частотой 24 840 МГц.

Для генерации брэгговских колебаний нужно выполнение двух главных условий: в рабочем объеме устройства количество частиц в начальном состоянии должно превышать количество частиц в состоянии с меньшей внутренней энергией, необходимо достигнуть связь между частицами, которые излучают в разные моменты времени. В молекулярных генераторах первое условие обеспечивается электростатической сортировкой пучка молекул, а обратная связь с помощью объемного резонатора, который настроен на частоту, равную частоте излучения, сопровождающего переход молекулы из начального энергетического состояния в конечное. Пучок молекул образуется при вылете молекул из источника в вакуум сквозь узкие отверстия или капилляры.

Электростатическое распределение молекул по энергетическим состояниям в молекулярном генераторе базируется на том, что молекулы, которые обладают электрическим дипольным моментом, проходя сквозь неоднородное электрическое поле, отклоняются данным полем от прямолинейной траектории в зависимости от энергии. В первом молекулярном генераторе распределяющая система являлась квадрупольным конденсатором, имеющем в своем составе 4 параллельных стержня особой формы, скрепленных попарно с высоковольтным выпрямителем. Электрическое поле подобного конденсатора довольно неоднородно, что вызывает изменения траекторий молекул NH3, летящих вдоль его оси. Свойства молекул NH3 такие, что те из них, которые расположены в верхнем из используемой пары энергетическом состоянии, отклоняются к оси конденсатора и влетают внутрь объемного резонатора. Молекулы, расположенные в нижнем состоянии, откидываются в стороны и не попадают в него. Отсортированный подобным образом пучок имеет молекулы, расположенные в верхнем энергетическом состоянии. Попадая внутрь резонатора, подобные молекулы под воздействием его электромагнитного поля излучают фотоны. Они по-прежнему находятся внутри резонатора, увеличивая вероятность вынужденного излучения для молекул, которые пролетают позже, и усиливая его поле. Если интенсивность пучка активных молекул такая, что вероятность вынужденного излучения фотона превышает вероятность поглощения фотона в стенках резонатора, то образуется процесс самовозбуждения, т. е. на частоте перехода быстро возрастает интенсивность электромагнитного поля резонатора за счет внутренней энергии молекул пучка. Это увеличение останавливается, когда поле в резонаторе доходит до величины, при которой вероятность вынужденного испускания становится настолько большой, что половина молекул пучка успевает испустить фотон за время пролета резонатора. При этом в целом для пучка вероятность поглощения сравнивается с вероятностью вынужденного испускания.

Мощность, которая генерируется молекулярным генератором на пучке молекул NH3, составляет 10-8 Вт, стабильность частоты генерации лежит в пределах 107—10".

В дальнейшем были изобретены молекулярные генераторы на базе других дипольных молекул, которые работают в диапазоне миллиметровых и сантиметровых волн, и на пучке атомов водорода квантовые генераторы, работающие на длине волны 21 см. Данные приборы, как и квантовые усилители радиодиапазона, случается, называют мазерами. Существует несколько конструктивных вариантов молекулярных генераторов, которые отличаются устройством распределяющих систем, количеством резонаторов и т. п. К молекулярным генераторам относят в том числе и квантовые генераторы — генератор электромагнитных волн, в которых применяется явление вынужденного излучения. Первый квантовый генератор был сконструирован в диапазоне СВЧ в 1955 г. Н. Г. Басовым и А. М. Прохоровым в СССР и одновременно Ч. Таунсом в США. В качестве активной среды в нем применялся пучок молекул аммиака. Поэтому ему дали название молекулярного генератора. Впоследствии был сконструирован квантовый генератор СВЧ на пучке атомов водорода. Главная особенность этих квантовых генераторов — высокая стабильность частоты генерации, которая достигает 10—13, в силу чего они применяются как квантовые стандарты частоты.

Квантовые генераторы оптического диапазона — это лазеры. Оптические квантовые генераторы или ОКГ появились в 1960 г.

Лазеры работают от ультрафиолетовой до субмиллиметровой областей спектра в широком диапазоне длин волн, в непрерывном и импульсном режимах.

Существуют лазеры на стеклах и кристаллах, полупроводниковые, жидкостные и газовые. В отличие от других источников света, лазеры излучают монохроматические высококогерентные световые волны, полная энергия которых концентрируется в весьма узком телесном угле.