Поймать невидимку

К числу наиболее ярких и вместе с тем трудных страниц в истории развития физики в XX веке принадлежит открытие нейтрино. Необычным путем вошла в науку эта новая частица, удивительными оказались ее свойства, и не исключено, что именно с ней связаны самые глубокие тайны природы. 

 

Открытие нейтрино было связано с уверенностью исследователей в справедливости фундаментальных законов физики — законов сохранения. В самом начале ХХ века при изучении бета-распада радиоактивных ядер физики, как скрупулезные бухгалтеры, старались свести баланс энергии. Но он никак не сходился: часть энергии исчезала неведомо куда. Таким образом, под угрозой оказался один из фундаментальных законов физики — закон сохранения энергии. 

 

Спас положение швейцарский физик Вольфганг Паули, в 1930 году высказавший предположение, что при бета-распаде вместе с электроном рождается какая-то частица — невидимка, которая и уносит недостающую часть энергии. Незамеченной эта частица остается потому, что не имеет массы покоя и электрического заряда и не способна отрывать электроны от атома или расщеплять ядра, иными словами, не может производить те эффекты, по которым обычно судят о появлении частицы. К тому же она очень слабо взаимодействует с веществом, а потому может пройти через большую толщу вещества, не обнаруживая себя. 

 

В те годы, когда ученым были известны только электрон, протон и фотон, для подобного предположения была нужна большая научная смелость. После открытия в 1932-м тяжелой нейтральной частицы — нейтрона — итальянский физик Энрико Ферми предложил называть частицу, охарактеризованную Паули, «нейтрино», что буквально означает «нейтрончик». Как выяснилось позднее, гипотеза о существовании нейтрино «спасла» не только закон сохранения энергии, но и законы сохранения импульса и момента количества движения, а также основные принципы статистики частиц в квантовой механике. А сама гипотеза Паули естественным образом вошла в теорию бета-распада, созданную Ферми в 1934 году. Прежде чем стать равноправным членом семьи элементарных частиц, нейтрино еще долгое время оставались чисто гипотетическими частицами. Совершенно необходимые для объяснения многих легко наблюдаемых превращений сами они на протяжении более чем 20 лет оставались неуловимыми. 

 

Наблюдение реакций, связанных с нейтрино, стало возможным только после создания ядерных реакторов. Физики-ядерщики многих стран пытались экспериментально подтвердить существование теоретически «вычисленной» частицы. Ведь для окончательного доказательства существования нейтрино нужно было увидеть его непосредственное воздействие на вещество. Но получилось так, что первыми удалось обнаружить не нейтрино, а его античастицы — антинейтрино, которые в результате бета-распада осколков деления урана при работе атомного реактора испускаются в громадном количестве. Такой опыт был осуществлен в 1953 году американскими учеными Фредериком Рейнесом и Клайдом Коуэном на реакторе в Хэнфорде. Им удалось обнаружить характерную цепочку событий, вызванных антинейтрино. Этот эксперимент, с учетом «призрачности» свойств частиц, получил название проект «Полтергейст». За участие в этих исследованиях и за последующие эксперименты ученый-физик Фредерик Рейнес был в 1995 году удостоен Нобелевской премии. 

 

К 2000-му году было теоретически обосновано и экспериментально подтверждено существование трех типов нейтрино: электронного, мюонного и тау-нейтрино. 

 

📖 Источник информации 

 

Нейтрино естественного происхождения имеют три принципиально разных источника. Первый из них — это реликтовые нейтрино, оставшиеся от Большого Взрыва. Согласно модели горячей Вселенной в настоящее время их температура близка к абсолютному нулю (около 2К). Хотя в среднем в 1 см3 пространства содержится от 300 до 400 реликтовых нейтрино всех трех типов. Однако практического метода для регистрации этих реликтовых нейтрино пока нет. Вторым источником нейтрино служат ядерные реакции, идущие в ядрах звезд. Солнце производит порядка 2•10^38 нейтрино каждую секунду, а сверхновые звезды могут испустить в тысячу раз больше нейтрино, чем наше Солнце произведет за 10 миллиардов лет его жизни. Третьим «поставщиком» высокоэнергетичных нейтрино являются космические лучи, пронизывающие Землю со всех сторон. 

 

На сегодняшний момент большинство наших знаний о Вселенной получено из наблюдений фотонов. Фотоны обильно вырабатываются, стабильны и электрически нейтральны, их просто обнаружить в широкой области энергий, а их спектры несут детальную информацию о химических и физических свойствах источников. Но горячие плотные области в ядрах звезд, ядра активных галактик и других энергетичных астрофизических источников для фотонов непрозрачны. 

 

Обнаружение космических источников нейтрино может пролить свет на физику экзотических астрономических объектов, таких как экстремально мощные активные ядра галактик или таинственные гамма-вспышки, и помочь сделать шаг вперед в понимании загадки темной материи. Одна из интереснейших и труднейших задач для физиков и астрономов — «поймать» нейтрино внеземного происхождения, и прежде всего измерить поток нейтрино от Солнца, что позволит подтвердить теоретические гипотезы о механизмах реакций, обеспечивающих его светимость. Солнце производит только электронные нейтрино, но они значительно различаются по своим энергиям. Согласно Стандартной Солнечной Модели солнечная светимость поддерживается главным образом за счет энергии, которая освобождается в результате цепочки реакций, приводящей к образованию гелия из четырех протонов (водородный цикл). Но иногда происходит побочная реакция превращения бериллия в бор, и в этом случае образуются нейтрино с более высокой энергией. 

 

📖 Трое из ядра 

 

Антинейтрино, как и нейтрино, возникло чисто теоретически, но после эксперимента в рамках проекта «Полтергейст» получило полное право на существование. Нейтрино рождается во всех процессах, где рождается позитрон или поглощается электрон, а антинейтрино рождается при испускании электрона или поглощении позитрона. 

 

Очень скоро выяснилось, что нейтрино появляется не только при бета-распаде. 

В 1936 году в космических лучах были обнаружены частицы — мюоны, абсолютные двойники электрона во всем, кроме массы. Масса мюона в 206,8 раза больше массы электрона, и из-за этого он нестабилен и быстро распадается на электрон, нейтрино и антинейтрино. Таким образом, оказалось, что нейтрино появляется в компании с электроном или с мюоном. В первом случае говорят об электронном нейтрино, а во втором — о мюонном нейтрино. 

 

Тождественны ли эти нейтрино, или все же это два типа частиц, можно было решить только экспериментально. Смысл эксперимента, идея которого принадлежала Бруно Понтекорво, состоял в следующем. Если оба нейтрино тождественны, то мюонные нейтрино и антинейтрино будут порождать как мюоны, так и электроны или позитроны, если же они различны, то следует ожидать появления только мюонов. В 1962 году в США на одном из ускорителей был проведен эксперимент, подтвердивший существование двух типов нейтрино и антинейтрино — электронных и мюонных. 

В 1975 году группой во главе с Мартином Перлом в Стэнфорде (Stanford Linear Accelerator Center) была открыта тау-частица. Она имеет массу, в 3 500 раз большую, чем электрон, и ее распад показывал то же самое несоответствие энергии, которое привело Паули к предсказанию нейтрино. Это дало серьезные основания предполагать существование третьего сорта нейтрино, связанного с тау-частицей. 

 

И наконец, в июле 2000 года участниками эксперимента по непосредственному наблюдению тау-нейтрино было объявлено о получении результатов, подтверждающих существование элементарной частицы, названной тау-нейтрино. Таким образом, исследования показали, что возможно существование трех видов нейтрино, представляющих собой полный набор частиц этого класса: электронный нейтрино, мюонный нейтрино и тау-нейтрино, причем каждый со своим антинейтрино. В ядерной физике эти три разновидности нейтрино называются ароматами. 

 

📖 Ловушки для неуловимых 

 

Для нейтрино солнечного вещества как будто и не существует: они улетают с места возникновения по прямолинейной траектории, нигде и ничем не отклоняясь, многие из них достигают поверхности Земли. Не имеет значения, день стоит или ночь: днем нейтрино прилетают сверху, а ночью — снизу, свободно пронзая земной шар. К счастью, существуют изотопы, с помощью которых можно устроить для нейтрино хоть и небольшое, но заметное препятствие. Наиболее известным из них является хлор-37. В тех редких случаях, когда нейтрино сталкивается с ядром атома хлора, это ядро испускает электрон и возникает атомное ядро радиоактивного аргона, которое распадается через 35 дней. Используя эту реакцию, можно построить детектор для солнечных нейтрино, который, чтобы компенсировать редкость таких столкновений, должен иметь большие размеры и для защиты от фонового излучения находиться глубоко под землей. 

 

Первый эксперимент по обнаружению солнечных нейтрино с использованием этого метода был начат Раймондом Дэвисом в 1967 году в золотой шахте в Homеstake (Южная Дакота, США). Большое количество контрольных экспериментов показало, что эффективность извлечения аргона из бака — около 100%. Если количество нейтрино правильно оценивается астрофизической моделью Солнца, то в контейнере каждый день в среднем один атом хлора должен превращаться в атом аргона под действием нейтрино. Если бы этот детектор обнаружил количество нейтрино, близкое к предсказанному теорией, то это стало бы подтверждением того факта, что Солнце нагревается за счет ядерных реакций превращения водорода в гелий. 

 

К сожалению, эксперименты, проводившиеся в течение нескольких лет, показали, что одна такая реакция происходит в среднем раз в три дня. Из этого следовал вывод, что Солнце производит только треть ожидаемых нейтрино с высокими энергиями. Астрофизики проверяли модели, а Дэвис искал ошибки в эксперименте. Но несоответствие моделей и эксперимента не исчезло и в 1988 году за дело взялись японские ученые на своем подземном детекторе Kamiokande-II, который расположен на глубине 1 000 м в шахте Камиока в префектуре Gifu. Их эксперимент принципиально отличался от эксперимента Дэвиса. Японцы использовали рассеяние солнечных нейтрино на электронах обычной воды. В результате столкновения нейтрино с каким-либо атомом, входящим в состав воды, ядро атома отскакивало, а электрон из атомной оболочки вылетал с огромной скоростью, создавая в воде свечение темно-голубого цвета, называемое Черенковским излучением. 

 

Такая методика позволяет регистрировать все типы нейтрино, но максимально она чувствительна к электронным нейтрино. Ее достоинство заключается в том, что можно определить достаточно точно, откуда прибыло нейтрино, так как вылетевший электрон сохраняет направление движения нейтрино. Для того чтобы поймать нейтрино, использовались 3 000 тонн чистейшей воды, помещенной в стальной цилиндрический резервуар. 1 000 фотоумножителей, размещенных на внутренней поверхности резервуара, фиксировали Черенковское излучение, свидетельствующее о появлении нейтрино. Но подобно экспериментам Homеstake, Kamiokande-II обнаруживал только очень редкие высокоэнергетичные нейтрино. За тысячу дней наблюдений японские ученые обнаружили только половину от ожидаемого потока таких нейтрино. 

 

Необходимо же было еще обнаружить и низкоэнергетичные нейтрино, возникающие в результате чрезвычайно важных для Солнца реакций водородного цикла. Для этого можно было воспользоваться тем, что при воздействии низкоэнергетичных нейтрино на атом галлия образуется атом германия с периодом распада 11 дней. Однако галлий — редкий и очень дорогой металл, его мировая добыча невелика, а для получения надежных результатов детектор должен был бы содержать примерно 40 тонн этого элемента. Поэтому галлиевые детекторы появились значительно позднее. 

 

Российско-Американский галлиевый эксперимент, получивший название SAGE, был проведен на Боксанской нейтринной обсерватории, расположенной на большой глубине в горах Кавказа в России. Почти 100 измерений потока солнечных нейтрино, проведенных в течение 1990—2000 годов, зафиксировали только половину потока нейтрино, который прогнозируется Стандартной Солнечной Моделью. Огромное число различных тестов, проведенных для проверки надежности эксперимента, указали на то, что расхождение между прогнозами солнечной модели и измерениями потока в SAGE не может быть результатом ошибок эксперимента. 

 

📖 Дефицит массы 

 

Таким образом, все четыре солнечных нейтринных эксперимента (Homestake, Kamiokande, SAGE и GALLEX) показывают, что измеренный поток солнечных нейтрино на орбите Земли значительно меньше, чем предсказано Стандартной Солнечной Моделью. Это расхождение получило название «Проблемы солнечного нейтрино». В то время когда шли эксперименты, физики-теоретики и астрофизики пытались выяснить причину этих расхождений. Существуют два возможных объяснения: либо ученые не знают в действительности, как звезды (и, в частности, Солнце) обеспечивают свою светимость, либо не понимают природы нейтрино. Тщательные вычисления, проведенные астрономами, показали, что дефицит солнечных нейтрино различных энергий не может урегулироваться никакими приемлемыми моделями. 

 

Непростая репутация нейтрино навела некоторых ученых на мысль, что возможны взаимные превращения нейтрино (так называемые осцилляции) за время их путешествия от центра Солнца к Земле. Еще в 1957 году физик Бруно Понтекорво сформулировал теорию нейтринных преобразований, согласно которой при существовании различных видов нейтрино они могут трансформироваться из одного вида в другой и обратно. Но для такого превращения необходимо, чтобы нейтрино имело хотя бы крошечную массу. Безмассовые частицы не способны на такие превращения. Следовательно, обнаружение осцилляций нейтрино будет свидетельством наличия у них массы покоя. А потому последующие нейтринные эксперименты ставили своей основной целью поиск осцилляций нейтрино. 

 

В 1998 году участники эксперимента «Суперкамиоканде» заявили о регистрации явлений, похожих на нейтринные осцилляции. В ходе эксперимента исследовалось число мюонных нейтрино, рожденных в верхних слоях земной атмосферы, при столкновении протонов космических лучей с ядрами атомов воздуха, приходящих в детектор с разных расстояний. Оказалось, что меньшее число мюонных нейтрино приходило с тех направлений, где нейтрино преодолевали большее расстояние. Эти результаты дали основания полагать, что количество нейтрино данного класса зависит от пройденного ими пути, что может быть следствием трансформации нейтрино из одного вида в другой. 

 

Решение проблемы дефицита солнечных нейтрино, и в частности исследование нейтринных осцилляций, также требует независимых измерений потока электронных нейтрино и мюонных и тау-нейтрино. Такие исследования были выполнены Садбурской нейтринной обсерваторией (SNO). Благодаря использованию тяжелой воды были измерены поток и энергия электронных нейтрино и поток всех нейтрино с использованием двух типов взаимодействий нейтрино с дейтерием. Потоки нейтрино, измеренные двумя способами, различались на треть, и причину этого расхождения ученые видят в том, что электронные нейтрино, возникающие в центре Солнца по пути к Земле, преобразовались частично в мюонные, а частично в тау-нейтрино. Такие преобразования свидетельствуют о наличии у нейтрино массы покоя. Оказалось, что все нейтрино Вселенной весят примерно столько же, сколько все видимые звезды.#наука и образование #физика #невидимка #научное #интересно

Еще по теме здесь: Новости науки и техники.

Источник: Поймать невидимку.