ПОЛУПРОВОДНИКИ

ПОЛУПРОВОДНИКИ

Полупроводники — класс веществ, занимающих промежуточное положение между веществами, хорошо проводящими электрический ток (проводники, в основном металлы), и веществами, [фактически не проводящими электрического тока (изоляторы или диэлектрики).

Для полупроводников характерна сильная зависимость их свойств и характеристик от микроскопических количеств содержащихся в них примесей. Изменяя количество примеси в полупроводнике от десятимиллионных долей процента до 0,1—1%, можно изменить их проводимость в миллионы раз. Другое важнейшее свойство полупроводников состоит в том, что электрический ток переносится в них не только отрицательными зарядами — электронами, но и равными им по величине положительными зарядами — дырками.

Если рассматривать идеализированный полупроводниковый кристалл, абсолютно свободный от каких-нибудь примесей, то его способность проводить электрический ток будет определяться так называемой собственной электропроводностью.

Атомы в кристалле полупроводника связаны между собой с помощью электронов внешней электронной оболочки. При тепловых колебаниях атомов тепловая энергия распределяется между электронами, образующими связи, неравномерно. Отдельные электроны могут получать количество тепловой энергии, достаточное для того, чтобы «оторваться» от своего атома и получить возможность свободно перемещаться в кристалле, т. е. стать потенциальными носителями тока (по-другому можно сказать, что они переходят в зону проводимости). Такой уход электрона нарушает электрическую нейтральность атома, у него возникает положительный заряд, равный по величине заряду ушедшего электрона. Это вакантное место называют дыркой.

Так как вакантное место может быть занято электроном соседней связи, дырка также может перемещаться внутри кристалла и являться уже положительным носителем тока. Естественно, что электроны и дырки при этих условиях возникают в равных количествах, и электропроводность такого идеального кристалла будет в равной степени определяться как положительными, так и отрицательными зарядами.

Если на место атома основного полупроводника поместить атом примеси, во внешней электронной оболочке которого содержится на один электрон больше, чем у атома основного полупроводника, то такой электрон окажется как бы лишним, ненужным для образования межатомных связей в кристалле и слабо связанным со своим атомом. Достаточно в десятки раз меньше энергии, чтобы оторвать его от своего атома и превратить в свободный электрон. Такие примеси называют донорными, т. е. отдающими «лишний» электрон. Атом примеси заряжается, разумеется, положительно, но дырки при этом не появляется, так как дыркой может быть только вакансия электрона в незаполненной межатомной связи, а в данном случае все связи заполнены. Этот положительный заряд остается связанным со своим атомом, неподвижным и, следовательно, в процессе электропроводности участия принимать не может.

Введение в полупроводник примесей, внешняя электронная оболочка которых содержит меньшее количество электронов, чем в атомах основного вещества, приводит к появлению незаполненных связей, т. е. дырок. Как было сказано выше, эта вакансия может быть занята электроном из соседней связи, и дырка получает возможность свободного перемещения по кристаллу. Иными словами, движение дырки — это последовательный переход электронов из одной соседней связи в другую. Такие примеси, «принимающие» электрон, называют акцепторными.

С увеличением количества примесей того или иного типа электропроводность кристалла начинает приобретать все более ярко выраженный электронный или дырочный характер. В соответствии с первыми буквами латинских слов negativus и positivus электронную электропроводность называют электропроводностью я-типа, а дырочную — р-типа, отмечая этим, какой тип подвижных носителей заряда для данного полупроводника является основным, а какой — неосновным.

При электропроводности, обусловленной наличием примесей (т. е. примесной), в кристалле по-прежнему остается 2 типа носителей: основные, появляющиеся главным образом за счет введения в полупроводник примесей, и неосновные, обязанные своим появлением тепловому возбуждению. Содержание в 1 см3 (концентрация) электронов п и дырок р для данного полупроводника при данной температуре есть величина постоянная: n- p=const. Это значит, что, увеличивая за счет введения

Если приложить к структуре металл — диэлектрик полупроводник n-типа напряжения (указанной на рисунке полярности), то в приповерхностном слое полупроводника возникает электрическое поле, отталкивающее электроны. Этот слой оказывается обедненным электронами и будет обладать более высоким сопротивлением. При изменении полярности напряжения электроны будут притягиваться электрическим полем и у поверхности создастся обогащенный слой с пониженным сопротивлением.

В полупроводнике р-типа, где основными носителями являются положительные заряды — дырки, та полярность напряжения, которая отталкивала электроны, будет притягивать дырки и создавать обогащенный слой с пониженным сопротивлением. Схема полярности в этом случае приведет к отталкиванию дырок и образованию приповерхностного слоя с повышенным сопротивлением.

 

Следующее важное свойство полупроводников — их сильная чувствительность к температуре и облучению. С ростом температуры повышается средняя энергия колебания атомов в кристалле, и все большее количество связей будет подвергаться разрыву. Будут появляться все новые и новые пары электронов и дырок. При достаточно высоких температурах собственная (тепловая) проводимость может сравняться с примесной или даже значительно превзойти ее. Чем выше концентрация примесей, тем при более высоких температурах будет наступать этот эффект.

Разрыв связей может осуществляться также за счет облучения полупроводника, например, светом, если энергия световых квантов достаточна для разрыва связей. Энергия разрыва связей у разных полупроводников различна, поэтому они по-разному реагируют на те или иные участки спектра облучения.

В качестве основных полупроводниковых материалов используют кристаллы кремния и германия, а в роли примесей — бор, фосфор, индий, мышьяк, сурьму и многие другие элементы, сообщающие полупроводникам необходимые свойства. Получение полупроводниковых кристаллов с заданным содержанием примесей — сложнейший технологический процесс, проводимый в особо чистых условиях с использованием оборудования высокой точности и сложности.

Все перечисленные важнейшие свойства полупроводников используются для создания самых различных по своему назначению и областям применения полупроводниковых приборов. В технике широко используются диоды, транзисторы, тиристоры и многие другие полупроводниковые приборы. Применение полупроводников началось сравнительно недавно, а сегодня уже трудно перечислить все их «профессии». Они преобразуют световую и тепловую энергию в электрическую и, наоборот, с помощью электричества создают теплоту и холод (см. Гелиоэнергетика). Полупроводниковые приборы можно встретить в обычном радиоприемнике и в квантовом генераторелазере, в крошечной атомной батарее и в миниатюрных блоках электронной вычислительной машины. Инженеры не могут сегодня обходиться без полупроводниковых выпрямителей, переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить надежность.

Об этом можно прочесть в статье Микроэлектроника.