Бразилия: от диких обезьян к мировому признанию в математике

Услышав, что я живу в Бразилии, многие первым делом вспоминают стереотип: «А-а-а, много-много диких обезьян!». Действительно, обезьян здесь можно встретить, но если говорить о действительно массовой фауне, то правильнее было бы сказать, что в Бразилии очень много муравьёв. Этой теме даже посвящён рассказ Герберта Уэллса «Империя муравьёв». Однако куда большее удивление вызывает тот факт, что Бразилия за последние десятилетия превратилась в одну из ведущих математических держав мира.

Бразильские обезьянки

Рождение математической державы

Научное развитие Бразилии началось относительно недавно — Бразильской академии наук немногим более века. Знаковым событием стало открытие в середине XX века в Рио-де-Жанейро Института чистой и прикладной математики (IMPA). Перед ним стояла амбициозная цель — стать мировым научным центром, и эту задачу можно считать блестяще выполненной. Особенно сильные позиции страна заняла в области теории динамических систем.

Любопытно, что одно из фундаментальных понятий этой теории — «подкова Смейла» — было придумано буквально на пляжах Рио. Эта история, услышанная мной на семинаре, казалась почти легендой, но проверка подтвердила её достоверность. Стив Смейл в своей статье «Finding a Horseshoe on the Beaches of Rio» описывает, как в 1960 году, будучи постдоком на стипендию Национального научного фонда США, он вёл исследования на побережье.

In 1960 in Rio de Janeiro I was receiving support from the National Science Foundation (NSF) of the United States as a postdoctoral fellow, while doing research in an area of mathematics which was to become the theory of chaos. Subsequently questions were raised about my having used U.S. taxpayers' money for this research done on the beaches of Rio. In fact none other than President Johnson's science adviser, Donald Hornig, wrote in 1968 in Science: This blithe spirit leads mathematicians to seriously propose that the common man who pays the taxes ought to feel that mathematical creation should be supported with public funds on the beaches of Rio ...

Этот факт даже вызвал возмущение советника президента США: как можно тратить деньги налогоплательщиков на математиков, «расслабляющихся» на пляжах Рио!

Действительно, на пляжах в Рио красиво. Опрокидывающиеся волны и правда, напоминают отображение Смейла, хаотически перемешивая пену.

Международное признание и система поддержки

За годы пляжи Рио посетило множество математиков, которые заложили основы целой научной школы. Результатом этого пути стало признание Международного математического союза, который в 2018 году включил Бразилию в элитную группу стран высшей, пятой математической категории.

Обратите внимание: Смена магнитных полюсов Земли может произойти намного быстрее, чем считалось ранее.

В эту же группу входят всего десять других государств: Германия, Канада, Китай, США, Франция, Израиль, Италия, Япония, Великобритания и Россия.

Успех был построен не только на привлечении зарубежных талантов. Ключевую роль сыграла внутренняя система поддержки. В Бразилии проводится массовая национальная олимпиада по математике для учащихся государственных школ (OBMEP). Ежегодно в первом туре участвуют десятки миллионов школьников, а тысячи становятся медалистами. Победители получают существенные льготы при поступлении в вузы, а золотые медалисты обеспечиваются стипендиями на всех уровнях обучения — от бакалавриата до докторантуры.

Благодаря масштабу олимпиады даже в самых маленьких городах есть свои «звёзды» — золотые медалисты, известные всем соседям. Это значительно повысило престиж и интерес к математике в обществе. Успешный опыт позже переняли организаторы олимпиад по физике и химии.

Вызовы будущего

Сегодня система сталкивается с вызовами. В условиях экономии бюджетных средств расходы на образование, включая финансирование олимпиад, сокращаются. При этом, например, государственный фонд на избирательную рекламу политических партий, напротив, планируют увеличить. Несмотря на это, есть надежда, что уже подготовленные кадры — математики, инженеры, физики — и устоявшаяся система смогут преодолеть трудности. Если вам интересно взглянуть на задачи бразильской олимпиады, напишите в комментариях — я готов сделать их перевод с португальского!

Еще по теме здесь: Новости науки и техники.

Источник: Бразилия - страна где много ... математиков!.